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ABSTRACT 

The major problem addressed by this research is how to implement a transport 

protocol invented especially for high speed networking using the current workstations, so 

that the high throughput promised by the protocol will be achieved. 

The approach taken was to implement the SNR protocol, a transport protocol for 

high speed networking, named after its inventors, and composed of eight different 

machines (four transmitter and four receiver), using three Unix workstations connected 

with FDDI, allowing a throughput up to 100 Mbps. 

This thesis is the implementation of the transmitter part of the protocol; the receiver 

part is done in parallel in a separate thesis. The four transmitter machines are implemented 

as four different Unix processes working in parallel and communicate through shared 

memory which provides the fastest means of exchanging information between processes. 

The protocol is implemented on top of the Internet Protocol (IP) layer using the "raw 

socket" as interface to access the IP facilities. 

The C programming language was used for the software implementation in order 

to access efficiently to the Unix system calls and thus reduce the overhead of the operating 

system. 

This thesis shows that these new protocols can be successfully implemented using 

the current workstations and we expect that in a multiprocessor environment, where each 

machine is dedicated to a different processor, we will have even better performance. 
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I. INTRODUCTION 

A. BACKGROUND 

Transmitting data at higher speeds has been the focus of many researchers for 

several years. As fiber optics is becoming more and more the media of choice to 

interconnect different types of computers, allowing the transmission of gigabits of 

information per second, network researchers and designers place more strain on the 

performance processing to match the data rates of fiber optic networks. 

Fiber optics offers higher data transmission rates and lower error rates than copper 

wire, which justifies the need of change in design philosophy. New high speed protocols 

emphasize streamlining the normal data transmission processing for maximum throughput 

[Ref. 19] and thus, increasing channel utilization in the presence of high speed, long latency 

networks. 

The International Standards Organization (ISO) proposed a model for networks 

which has evolved into the ISO Open Systems Interconnection (OSI) [Ref. 20]. This model 

provides a definition of what each of seven network layers should be able to do. The 

relationship between these OSI seven layers is shown in Figure 1. 

The transport protocol is considered by many network people as the keystone of the 

whole concept of a computer communications architecture [Ref. 18]. It provides the basic 

end-to-end service of transferring data between hosts. Any process or application can be 

programmed to access directly the transport services without going through session and 

presentation layers. Consequently, transport layer can be a source of processing overhead 

and may be responsible for the low throughput of the whole system since it has several 

critical functions related to data transfer [Ref. 3]. This includes detecting and correcting 

errors in received packets, usually through retransmission, providing a flow control 

mechanism for the system and delivering packets in order to the higher layers. 

The performance of existing transport protocols is limited not only by the processor 

speed and memory access times but also by the processing overhead in the operating 
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Figure 1: OSI Protocol Stack 

system. The author in [Ref. 18] suggested two approaches to overcome the difficulties 

encountered in transport protocols that led to low performance in presence of high speed 

networks. 

The first approach is to adapt the conventional transport protocol to the new 

internetworking technology by improving its implementation. Research that has been done 

in this area show that the ability to provide high bandwidth to high speed network users 

depends heavily on protocol implementation [Ref. 19]. The idea here is to take advantage 

of the long experience gained with the existing protocols and thus avoid certain 

implementation problems believed to be the cause of their slowness. Some of these 

problems are the transfer of data from the user, timer management, buffer management, 

connection state management, inter-process communication and scheduling. 

The second approach is to invent new protocols devoted to be used in presence of 

high speed network.These new protocols, called lightweight transport protocols, are 

designed to offer higher throughput. Example of these protocols are VMTP (Vertasile 

Message Transaction Protocol), NETBLT (Network Bulk Transfer), XTP (Express 

Transfer Protocol) and SNR, named after its inventors (Sabnani, Netravali and Roome) 

from AT&T bell laboratories. 



In order to provide the high throughput, VMTP uses selective retransmission for 

error recovery, groups packets into blocks and transmits large groups of packets in a burst 

as fast as the network allows, rather than using rate control. This method is found to be 

more efficient in processing cost [Ref. 3]. NETBLT also groups packets into blocks, uses 

a rate control scheme (packet per second) based on the network congestion and selective 

retransmission is used for error recovery. XTP on the other hand is designed to be 

implemented in hardware and it combines the transport layer with the network layer. Flow 

control is achieved through the use of parameters which provide visibility of the receiver's 

buffer to the transmitter. It also uses rate control and the selective repeat method for error 

recovery. 

B. OBJECTIVES 

In the Naval Postgraduate School, more and more attention has been given to these 

new protocols. In particular, Lundy and Tipici conducted research in 1993 on the SNR 

protocol [Ref. 3]. They used a System of Communicating Machines (SCM) to analyze the 

protocol and verify that it is free from logical errors. In their conclusion they posed the 

question whether this protocol efficient enough to provide the high throughput which is 

expected from the lightweight transport protocols. 

This thesis is a continuing work on this transport protocol and an attempt to answer 

this question by implementing the transmitter part on the current workstations and 

performing realistic performance tests. The implementation of the SNR receiver is being 

conducted in parallel in a separate thesis by W. J. Wan [Ref. 22]. Our major goal in this 

work is to optimize the implementation in order to reduce the processing overhead and thus 

achieve the high throughput, promised by this protocol. A third research is conducted in 

parallel by R. Grier [Ref. 23] to test and verify our SNR implementation. 

C. ORGANIZATION OF THE THESIS 

In this implementation we follow very closely the specification introduced in [Ref. 

3]. In order to make this thesis independently readable, the state diagram and the Predicate 



Action Table of each of the SNR machines are reproduced in this thesis. Some corrections 

and implementation details are added to the protocol and will be pointed out as necessary. 

The thesis is organized into four chapters. Chapter II discusses the problems with 

existing protocols and introduces the specification of the SNR protocol (transmitter and 

receiver), including the state diagram and Predicate Action Table of each machine. Chapter 

III discusses the approach taken to implement the transmitter part, the algorithm of each 

transmitter machine is given. Finally we conclude in Chapter IV, along with some 

recommendations and future work that can be done as continuation on the same subject. 



II. SNR PROTOCOL 

A.   INTRODUCTION 

1. Problems with Existing Protocols 

In this section we will discuss briefly some of the problems that are considered to 

be the most important cause of the under utilization of the full potential offered by the fiber 

optic technology and therefore must be avoided when designing lightweight protocols. 

Existing protocols were designed when the processing speed of the CPU's was 

higher than the bit rates provided by the media and for that reason, one of the important 

consideration of their design was not to saturate the transmission media with high data 

rates. Today, with the introduction of fiber optic technology, the problem is reversed and 

the bottleneck has moved to the communications processing part of the system. 

Protocols must be interfaced with the host operating system, a required support to 

move data from one host to another (interrupts, I/O devices, buffers...). Some suggestions 

are made [Ref. 21] to get the best support from the operating system: 

. Parallel processing of independent functions of the protocol, 

. Avoiding the movement of data in memory, since this is the most costly operation 

in packet processing, 

. Making minimal use of operating system timer package. 

The overhead of managing timers can sometimes be a burden.Timers are used to 

recover from channel losses. In a positive acknowledgment scheme, there must be a timer 

associated with every packet. A timer must be set, monitored, cleared and reset every time 

a packet is sent or received. 

Another problem associated with timers is the values that this timers must be set to, 

which they depend on the round trip delay (RTD). Often the RTD can not be predicted with 

accuracy since it varies with the condition of the networks. 



When slow underlying conventional networks were used, the major issue was not 

to overflow channels and for that reason, variable size packets, that are just large enough 

to fulfill the need, were used, increasing the processing time at the receiver due to decoding 

operations. This was not a problem since the bit rates in the network was slow anyway. But 

with high speed networks, trying to minimize the packet size is just a wasted effort and for 

this reason standard packet format are used. 

The Go-Back-N method for error recovery is another defect of current protocols. 

Whenever the receiver detects a loss of a packet, it sends a negative acknowledgment 

message (NAK) to the transmitter, requiring retransmission of all the packets after the last 

correctly received one. If the data rates are high or the retransmission channel is long, this 

method may require many good packets to be retransmitted, causing significant loss of 

throughput. 

A conservative flow control scheme which uses the sliding window technique may 

limit the throughput of the protocol in long-delay situations [Ref. 18]. This is because the 

sliding window does not decuple acknowledgments from flow control. In the transmitter 

side, the window size is increased only by acknowledgments from the receiver. On the 

other hand, if the first packet of a given window gets lost, the receiver can not acknowledge 

any of the rest of the packets and has to wait for the lost packet to be recovered. At the same 

time, we can have a situation where the transmitter also has to wait for its window to be 

increased.Therefore, both transmitter and receiver are waiting for the retransmitter timer to 

expire. A better solution is to separate this two functions. 

2. Introduction to the SNR Protocol 

The SNR protocol was first introduced in [Ref. 12], then in [Ref. 2] a formal 

specification was given using the System of Communicating Machines (SCM) model, and 

finally in [Ref. 3] a further study was given on the protocol to refine and improve the SCM 

specification by applying the associated system analysis. More details about the protocol 

can be found in [Ref. 3] from which graphs and tables are reproduced in this chapter. 



The SNR protocol requires a full duplex link between two host computers 

connected across a high speed network as shown in Figure 2. 
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Figure  2: Network,Hosts,Entities and Protocol Processors 

Each host system in the network consists of eight finite state machines (FSM), four 

for the transmitter and four for the receiver. Each machine in the protocol has a specific 

function in coordination with the other machines 

B.   DESIGN AND ORGANIZATION 

To overcome the difficulties of the current transport protocols, discussed earlier in 

this chapter, some design principles are followed when designing the SNR protocol in order 

to simplify the protocol and reduce the processing overhead of the operating system. 

Unlike most current protocols where status messages are exchanged only when 

certain events occur, in the SNR protocol full state information is exchanged between 

transmitter and receiver on a regular basis and therefore, the generation of 

acknowledgments is totally decoupled from the data traffic. Although this technique 

increases the number of packets transmitted, which is negligible compared to the very high 

bandwidth of the fiber and the speed up it provides in processing, it has the advantage of 

simplifying the protocol and allowing parallel protocol processing which leads to higher 

performance. 

In order to avoid wasting the network resources caused by the retransmission of 

thousands of good packets when using the Go-Back-N error recovery method, the SNR 



protocol uses selective repeat method of retransmission, and the concept of blocking. 

Blocking reduces the overhead of maintaining large tables and complex procedures that are 

required for the selective repeat method. A group of packets (typically 8) is called a block. 

Packets within the block are transmitted and treated separately by the network. Upon 

successful reception of all of the packets in a block, the receiver acknowledges the block, 

rather than the individual packets. If a packet in a block gets lost, then the whole block of 

packets is retransmitted. Despite the retransmission of some good packets in the block, this 

method is used in order to simplify the protocol and thus gain in processing speed knowing 

that fiber-optic media supporting the protocol has very low error rates. 

A very important idea used in designing the SNR protocol that contributes 

significantly to the improvement of the performance, is the concurrent execution of several 

independent functions of the protocol. The four machines on each side (transmitter and 

receiver) execute in parallel with small interaction between them. 

Flexibility is another key of the SNR protocol and it is illustrated by specifying 

three modes of operation: 

Mode 0 is the simplest mode and has no error control or flow control. It is suited for 

virtual circuit networks and for the cases where quick interaction between the 

communicating entities is desired and short packets are used. 

Mode 1 has no error control but provides flow control. It is suitable for real time 

applications where error control is not needed and packet sizes are small. 

Mode 2 has both error control and flow control. It is useful for large file transfers 

in all types of network services. 

The way flow control is done in SNR protocol is as follows: 

The receiver writes the available buffer space it has in units of blocks into the 

buffer-available field of the receiver control packets, and the transmitter maintains the 

variables L, the maximum window size in units of blocks which will be chosen slightly 

larger than (RTD * maximum bandwidth)/number of bits in a block, and NOU, the number 

of outstanding blocks which have been transmitted but not yet acknowledged. Every time 



the transmitter completes the transmission of a block of packets, it increments NOU, and 

every time it receives a receiver control packet it decrements NOU by the number of 

acknowledged blocks. It starts the transmission of another new block only if NOU is less 

than L and buffer-available is greater than NOU. 

C.   PROTOCOL SPECIFICATION 

The general organization of the eight machines, including global variables through 

which machines communicate, is shown in Figure 3. Details of implementing the 

transmitter part will be left to the next chapter. 

1. Transmitter Processes 

a. Process Tl 

Transmission of new data packets and retransmission of unacknowledged 

packets is done by machine Tl. The state diagram and the Predicate Action Table of Tl are 

shown in Figure 4. 

Machine Tl starts executing its functions when the global variable T_active 

is set to TRUE by machine T2 upon successful connection establishment. In mode 0, Tl 

transmits data as long as T_active remains TRUE and there is data in the buffer OUTBUF. 

Every time the transmission of a block is completed, it increments the variable UWt 

(transmitter upper window). 

In mode 1 and in order to provide the flow control, a new block is 

transmitted only if the receiver has space in its buffer and the maximum window size has 

not been exceeded. The block is transmitted if NOU < L and buffer_available - NOU > 0. 

NOU is incremented every time a complete block is transmitted. It is decremented by 

machine T2 by the number of acknowledged blocks read from the receiver state 

information packet. 

In mode 2 if the "count" field of any block in the LUP table becomes 0, then 

Tl stops transmitting new packets and retransmits all packets in the expired block, count is 



reinitialized to 0 when the whole block is retransmitted. The variables UWt and NOU are 

incremented and a new entry in LUP table is made every time the transmission of a new 

block is completed. 
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Figure 3: Machine Organization Including the Shared Variables 

b. Process T2 

Process T2 has to establish the connection, receive and process the receiver 

control packets and finally terminate the connection. State diagram and Predicate Action 

Table are shown in Figure 5. 

Process T2 begins when the global Transmit is set to TRUE by T4. It then 

sends a "conn_req" packet with negotiated parameters and receives the answer "conn_ack" 

10 



packet with the same parameters set by the receiver, and if they agree on these parameters, 

it sends a "con_conf' packet to the receiver to confirm the connection and sets the global 

variable Tractive to TRUE, allowing the other transmitter machines to begin executing in 

Transition Predicate Action 

start T_active=T null 
finish T_active=F null 
retransmit T_active=T A 

mode= 2 A Expired(LUP) /=0 
Packet.seq:=(Expired(LUP)-1 )*block_size+ 

retranscount; 
Packet.data:=OUTBUF(Packet.seq mod 

OUTBUF'length); 
Enqueue(Packet,T_CHAN); 
sent:= T; 
inc (retrans_count); 
if retrans_count > block_size then 

retrans count:=l; 
LUP((Expired(LUP)-l) mod L+l).count:= 

initial value; 
end if; 

transmit 
blk 

T active=T A 

not (Empty(OUTBUF))A 

trans count <= blk_size A 

(mode=0v((NOU<LA 

buffer - NOU>0)A 

(mode=l v Expired(LUP)=0))) 

retrans_count := 1; 
Packet.seq:=UWt * block_size + 

trans_count; 
Dequeue(Packet.data,OUTBUF); 
Enqueue(Packet,T_CHAN); 
sent:=T; 
inc (trans_count); 

blk_ 
completed 

transcount > blk_size trans count := 1; 
inc (UWt); 

no_flow mode = 0 null 
flow_chk mode=l v mode = 2 inc (NOU); 
no_err mode = 1 null 
err_chk mode = 2 Insert (ÜWt, LUP); 

Figure 4: Tl State Diagram and Predicate-Action Table 

parallel. The connection is terminated by sending a "disc" packet when the global 

variable Transmit is set to FALSE by T4. During data transfer, T2 receives the receiver 

control packets and depending on the mode of operation, the following actions are taken: 

. Scount is reset to 0 (more explanation of the use of this variable in T3) 

. NOU is incremented by the number of acknowledged blocks (mode 1 and 

mode 2) 

11 



. LWr is copied into LWt, LOB bit field is copied into HOLD, and buffer- 

available field of the receiver control packet is copied into buffer-available (mode 1 and 2) 

. Acknowledged packets are removed from OUTBUF and from LUP table 

. count field in LUP table of the unacknowledged blocks are decremented 

by the number of the received k. 

finish 

unaccept 

accept 

no err 
err chk 

no flow 

discard 
lupdate 

flow chk Q 

Transition Predicate Action 
request Transmit=T A Accept=T A Fail=F Enqueue {Conn Req, T_CHAN); 
accept RJJHAN (front) = Conn AckA 

Acceptable (RJJHAN(front)) 
Inactive := T; 
Enqueue (Conn Conf, TJJHAN); 
Dequeue (RJJHAN); 

unaccept RJJHANtfront) = Conn Ack* 
not (Acceptable (R_CHAN(front))) 

Accept:=F; 
Dequeue (RJJHAN); 

clock Empty (RJJHAN) A clockJick inc (delay); 
ok delay < reset null 
timeout delay = reset inc (attempts); delay;=0; 
retry attempts < max_attempts Enqueue (Conn Req, TJJHAN) 
quit attempts = max_attempts Fail:=T 
finish Transmit = F A Empty (OUTBUF) A 

Disconnect = F A 

((mode = 2 A Empty (LUP)) v 
mode = 1 v mode = 0) 

T_active;=F; 
Enqueue (Disc, TJJHAN); 

abort Disconnect = T T active:=F; Transmit:=F; 
rcv_state not (Empty (R_CHAN))A Disconnect=F null 
discard RJJHAN (front), seq <= high v 

RJJHAN(front)=Conn Ack 
Oequeue(RJJHAN); 

update RJJHAN(front).seq > high scount:=0; high:=RJJHAN(front).seq; 
nojlow mode = 0 Dequeue(RJJHAN); 
fiow_chk mode = 1 v mode = 2 Balance(R CHAN(front).LOB,HOLD, 

R CHAN(front).LWr,      LW„ 
NOU); 

HOLD:=R CHAN(front).LOB; 
LWt := RJJHAN(front).LWr; 
buffer := R CHAN(front).buffer avaü. 
Update outbuf (OUTBUF, LW^; 

no_err mode = 1 Dequeue (RJJHAN); 
err_chk mode = 2 Update LUP (LUP, HOLD, LWt, 

RJJHAN(front).k); 
Dequeue (RJJHAN); 

Figure 5: T2 State Diagram and Predicate-Action Table 

12 



c. Process T3 

T3 starts when T_active is set to TRUE by machine T2 and executes its 

function each time a clock-tick occurs. Details of implementing the clock-tick are left to 

the next chapter. State diagram and Predicate Action Table of T3 are shown in Figure 6. 

Transition Predicate Action 
start l_active=l 
clock clock tick A 'l'_active = 1 inc (scount) 
no data sent=F inc (count) 
delay count < k A scount < Lim null 

timeout count = kv scount >= Lim Enqueue (7\stofe,T_CHAN); 
k:= min (2*k, klim) 

data sent = I Enqueue (ljtate, TJJHAN); 
k:=l 

no disc scount < Lim sent:= F; count:= 0 
disc scount = Lim Disconnect— 1 

confirm T_active = F null 
finish T_active = F null 

Figure 6: T3 State Diagram and Predicate-Action Table 

The main function of process T3 is to transmit periodically the transmitter 

control packets. In addition, and if no receiver control packets are received for a 

predetermined amount of time, it initializes an abnormal connection termination. For this 

purpose,it increments Scount every time it transmits a control packet, and T2 sets this 

variable to 0 every time it receives a receiver control packet. If Scount ever reaches a 

predetermined value Lim, then T3 sets the variable Disconnect to TRUE which causes T2 

to send a "disc" packet and sets T_active and transmit to FALSE. 

T3 transmits control packets depending on the global variable Sent, which 

is set to TRUE by process Tl after every data packet transmission. 

If Sent is TRUE, a control packet is sent and the variable Sent is reset to 

FALSE. If Sent is FALSE, then k is recalculated using the formula k=MIN (2*k, k*Lim) 

and control packet transmission is delayed for k*Tin seconds, where Tin is the period of the 

13 



clock-tick mechanism. If meanwhile Sent becomes TRUE, then T3 stops waiting and 

transmits the packet and resets k to 1. 

d. Process T4 

T4 is the first process invoked and is the interface between SNR protocol 

and the upper layer (the host). When it is invoked, it sets Transmit to TRUE, causing 

process T2 to initiate the connection. The result of this phase is known through the global 

variables T_active, Fail and Accept. If Fail is TRUE or Accept is FALSE,T4 sets Transmit 

to FALSE and the protocol is stopped, and the host is notified of the failure, otherwise the 

connection is established and data are transmitted between the two hosts. State diagram and 

Predicate Action Table of T4 are shown in Figure 7. 

Transition Predicate Action 
signal transmission signal from the host Transmit := T; Accept := T 
fail Fail = T Transmit := F; 

notify host of failure to connect; 
unaccept Accept = F notify host of unacceptable connection 
start T_active = T null 
write not (Full (OUTBUF))A not(eot) A 

T_active=T 
Enqueue (data stream from the host, 

OUTBUF) 
finish eot A T_active = T Transmit := F 
confirm T_active = F notify host of completion 
disc T_active = F notify host of disconnect 

Figure 7: T4 State Diagram and Predicate-Action Table 

2. Receiver Processes 

a. Process Rl 

Rl removes the received data packets from T_CHAN and either inserts 

them into the buffer INBUF (mode 1 or 2) or passes them to the host directly (mode 0). It 

starts its function when R_active is set to TRUE by machine R2. State diagram and 

Predicate Action Table are shown in Figure 8. 
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Transition Predicate Action 
start K_active = 1 null 
finish R_active = F A Empty (1NBUF) nuü 
receive T_CHAN (front) = DATA null 
no_buf mode = 0 Pass TJJHAN (front) to the host; 

Dequeue (T_CHAN) 
buffer mode = 1 v mode = 2 Order insert(T_CHAN(front), INBUF, 

RECEIVE, LWr,   dupücate); 
if not duplicate then 

received := T; 
Process jacket (T_CHAN(front).seq, RECEIVE, 

AREC,Buffer_avaü,LWr,UWr,LOB); 
end if; 
Dequeue (T_CHAN); 

Figure 8: Rl State Diagram and Predicate-Action Table 

b. Process R2 

Process R2 establishes the connection with the transmitter and thereafter 

receives and processes the transmitter control packets. It starts its function upon reception 

of a Conn_req message. Process R2 is the receiver counterpart of process T2. State diagram 

and Predicate Action Table are shown in Figure 9. 

c. Process R3 

State diagram and Predicate Action Table of process R3 are shown in Figure 

10. It has exactly the same structure and function as the process T3: it transmits the receiver 

control packets periodically to the transmitter through R_CHAN and initiates an abnormal 

connection if no transmitter control packets are received for a predetermined amount of 

time. 
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Transition Predicate Action 
ack T_CHAN (front) = Connßeq Evaluate {Conn req); 

Dequeue (T_CHAN); 
Enqueue [Conn ack, R_CHAN); 

clock clock Jick A Empty (T_CHAN) inc (delay) 
ok delay < reset Enqueue (Conn ack, R CHAN); 
timeout delay = reset nuü 
start 1 _CHAN (front) = Conn confv R_active:= '1; 

T_CHAN(front) = T state v if T_CHAN(front) = Conn con/"then 
T_CHAN(front) = Data Dequeue(T_CHAN); 

end if; 
finish Disconnect = T v T_CHAN(front)=Dwc R_active := F; 
update T_CHAN(front) = T state A scount := 0; 

T_CHAN(front).seq > high high := T_CHAN(front).seq; 
Dequeue (T CHAN); 

discard ('l'_CHAN (front) = Connjonfv 
T_CHAN(front) = Conn req) v 

(T_CHAN(front) = Tjtate A 

T_CHAN(front).seq <= high)) 

Dequeue (T_CHAN); 

lost_ack _I'_CHAN(front) = Conn req Dequeue T.CHAN); 
Enqueue (Conn_ack, R_CHAN) 

Figure 9: R2 State Diagram and Predicate-Action Table 

Transition Predicate Action 
start K_active=l null 
clock clock_tick A R_active='l' inc(scount) 
no_data received=F inc(count) 
delay count<k A scounKLim null 
timeout count=k v scount>=Lim enqueue(R_state,R_CHAN); 

k:=min(2*k, klim) 
data received=T enqueue(R_state, R_CHAN); 

k:=l 
no_disc scounKLim received :=F; count:=0 
disc scount=Lim Disconnect;=T 
confirm R_active=F null 
finish R_active=F null 

Figure 10: R3 State Diagram and Predicate-Action Table 
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d. Process R4 

Process R4 is the interface to the receiving host. It passes the data in INBUF 

to the host and notifies it of any errors that occur. State diagram and Predicate Action Table 

of process R4 are shown in Figure 11. 

More details of the receiver processes implementation can be found in [Ref. 

22]. 

retrieve 

Transition 

finish 

disc 
accept 

err chk 

Predicate 
^Tacrlve^T^^ 
R_active = V A Empty (INBUF) A 

Disconnect = F 
Disconnect = T 
Disconnect = F A 

not (Empty(INBUF))A 

mode=l v mode=2 A 

signal from host 
mode = 1 
Wait (INBUF, RECEIVE) = f~ 
Wait(INBUHRKCmVt!) = r.1 

mode = 2 

Action 
sr 
Sffl~ 

notify host of disconnect 
JuTT 

nW 
null 
Retrievejnodel (INBUHREC'KIVF;, 

AREC,buffer_avail,LWr,UWr,LOB); 
Retreive_mode2 (INBUF.RECEIVE, buffer_avaü); 

Figure 11: R4 State Diagram and Predicate-Action Table 
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III. IMPLEMENTATION OF THE TRANSMITTER 

A.   GENERAL APPROACH 

1. Introduction 

The software implementation of the protocol will be done on the Naval 

Postgraduate School FDDI (100 Mbps) network, which is composed of three workstations 

with two different versions of the Unix operating system, one IRIX and two SOLARIS 

system. 

Consequently, the portability of the resulting product is an important issue that must 

be taken into account from the beginning. Protocols are implemented at the low level of the 

operating system (the kernel level) to take advantage of the facilities and functions 

available at that level, which are sometimes different from one version to another. 

Moreover, this is not considered in the specification of the protocol and left as abstraction. 

As mentioned in early chapters, minimizing the overhead of the operating system 

in order to speed up the overall execution of the software is our main goal and for that 

reason we chose to use the C programming language to help achieving this goal by allowing 

more flexibility to access the operating system functions with efficiency. It is easier to 

execute system calls with minimum cost, i.e, minimum number of instructions. In addition 

it helps developing portable code. 

Dealing efficiently with the inevitable overhead caused by the operating system 

related functions is the most important implementation issue in this thesis. 

On the other hand, the basic idea of the design of the SNR protocol is to have four 

different machines (processes) on the transmitter side that work in parallel, and other four 

processes on the receiver side. Since the number of processors in the workstations used to 

implement this protocol is less than the number of processes executing in parallel, 

expensive operations, such as context switches to save the current status of the CPU during 

scheduling are needed. In fact, the scheduler on the Unix system belongs to the general 

class of operating system schedulers known as round robin with multilevel feedback, 
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meaning that the kernel allocates the CPU to a process for a time quantum, preempts a 

process that exceeds its time quantum, and feeds it back into one of several priority queues 

[Ref. 9]. A process may need many iterations through the "feedback loop" before it 

finishes, therefore, a lot of overhead is involved, slowing down the execution of the 

program. 

Context switches are also necessary to handle the clock tick event used by both 

machine T2 during the connection establishment and by machine T3 to execute its function, 

as will be explained later in this chapter. 

The SNR protocol will be implemented on top of the Internet Protocol (IP), a 

connectionless protocol that has been developed for the network layer. Therefore an 

interface is needed to access the IP facilities. An SNR header is added to the packet before 

it is given down to the IP protocol, which has the responsibility for routing and relaying 

packets in an internet environment. 

Each protocol has to have an identifier, so the IP layer knows what protocol it deals 

with. We chose to assign 191 as the SNR identifier. 

2. The Raw Socket 

The Unix operating system provides the socket interface to support communication 

protocols and creates an endpoint for communication. The types of socket currently defined 

are: 

. stream socket: provides sequenced, reliable, two-way connection based byte 

streams. 

. datagrams socket: supports datagrams (connectionless, unreliable messages of a 

fixed maximum length). 

. sequenced packet socket: provides a sequenced, reliable, two-way connection 

based data transmission path for datagrams of fixed maximum length. 

. RDM socket: not implemented yet. 
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. raw socket: available only to the super user and provides access to the internal 

network interface, generally used to develop new protocols. 

The first two types are designed to support the Internet TCP and Internet UDP 

protocols respectively. 

In the current implementation of the SNR protocol we chose to build the interface 

to the underlying protocol layer (the IP protocol) by using the raw socket, since it is 

designed to support developing new protocols. It will be used to implement the transmitter 

channel (T_CHAN) mentioned in the specification and left as abstraction. The system call 

"sendto" is used in this case. To implement the receiver channel (R_CHAN) a circular 

buffer is used, and packets received from the raw socket, using the system call 

"receivfrom", are enqueued in this buffer and later processed by T2 during the connection 

establishment and by T3 to receive the receiver state packets, as will be shortly explained. 

3. Shared Memory 

Since the implementation of the SNR transmitter, as well as the receiver, involves 

the interaction of four different processes, we have to look carefully at the different 

methods that are available for different processes to communicate with each other. 

In traditional single process programming, different modules within the single 

process can communicate with each other using global variables, functions calls and the 

arguments and results passed back and forth between functions and their callers. In our case 

instead, we deal with separate processes, executing in parallel, each with its own address 

space and hence, there are more details to consider. 

The unix system supports three types of Inter-Process Communication (IPC): 

messages, semaphores and shared memory. 

Messages allow processes to send formatted data streams to an arbitrary process. 

Data is transmitted between processes in discrete portions called messages. 

21 



Shared memory allows processes to share parts of their virtual space. This is done 

by allowing processes to set up access to a common virtual memory address space, and the 

sharing occurs on a segment basis, which is memory management, hardware dependent. 

Semaphores allow processes to synchronize execution by doing a set of operations 

atomically on a set of semaphores. Communication is made through the exchange of 

semaphore values. As a form of Inter-Process Communication, they are not used for 

exchanging large amounts of data. 

In this current implementation of the SNR transmitter we will use the shared 

memory mechanisms along with semaphores to synchronize the access of different 

machines to some global variables that constitute critical sections, which we will detailed 

later in this chapter. 

This sharing of memory provides the fastest means of exchanging information 

between processes since data is not moved at all. A segment is first created outside the 

address space of any process, and then each process that wants to access it, executes a 

system call to map it into its own address space. Several hardware segmentation registers 

are used to address data segments, and the system keeps one or more of these registers free 

to make this mapping very fast. Since the shared segment is within the process's address 

space, access to it is just as fast as access to local variables. 

4. Timing Mechanism 

As mentioned in the protocol specification [Ref. 3], the timing mechanism is based 

on an event, called "clock-tick" and occurs periodically at Tin second intervals. To 

implement this mechanism we use the interval timer facility provided by unix system. This 

facility is a powerful tool that provides the microsecond resolution and allow the user to 

specify both an offset from the current time (the delay), and the recurrence time (the 

interval). The timer will not fire until the delay has passed, and then will continue to fire at 

the end of each interval. 

1. in fact^esolution is machine dependent and limited by the interval clock of the machine. 
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This timer is used by both machine T3, to send transmitter control packet every Tin 

second and by machine T2 while establishing the connection. Tin is given by the formula: 

Tin = max(RTD/kou,IPT), where RTD is the estimated round trip delay for the logical 

connection, the constant kou is typically a power of two, such as 16 or 32, and IPT is the 

average time between two data packet transmission. RTD is computed during the 

connection establishment using the "gettimeofday" system call just before sending a 

request to get the old date and just after receiving the acknowledge of the same request to 

have the new date. The difference between old and new date is equal to RTD. 

5. Using Signals 

The way the timing mechanism, explained in the previous paragraph, works, is by 

sending a signal called "SIGALRM" each time the delay, specified in the system call has 

passed. The process using the timer, needs to arrange and catch this signal. 

Beside SIGALRM, two other signals are used in the current implementation of the 

SNR transmitter as follows: 

. SIGUSR1: used by machine T2 to terminate T2_slave process that is responsible 

for receiving packets from the raw socket. 

. SIGUSR2: sent from T2 to process T4 to inform the latter about the end of the 

connection establishment phase. By this way we avoid the busy waiting of T4. 

B.   TRANSMITTER MACHINES 

1. Time Dependency 

Machine T4 is invoked the first by signal from the upper layer (when the user needs 

a service). It then gets the shared memory identifier and attaches it to its address, initializes 

the global variables, including the negotiated parameters, forks2 T2 and then waits the 

2. fork-exec is the way processes are created in UNIX system.First a process forks,meaning that it 
makes a copy of itself,and then by exec system call,this copy will be replaced by the process we 
want to execute. 
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arriving of the signal SIGUSR2, sent by T2 at the end of the connection phase. T2 begins 

by forking T2_slave, the fifth process added to the protocol to receive packets from the raw 

socket, enables the timer to fire every Tin microsecond (T;n is first chosen to be 50 

milliseconds) and then executes the standard three way hand-shake connection 

establishment with the receiver, which we will detail later. At the end of this procedure, it 

sends the signal SIGUSR2 to T4, which depending on the result of the connection phase, 

terminates the session by notifying the host or, forks the remaining machines, Tl and T3, 

and from that point in time, all machines begin executing in parallel following their 

specification. Figure 12 shows the time dependency between machines invoked in the 

transmitter part of the SNR protocol. 

2. Critical Sections and Synchronization 

By using the shared memory for communication between processes, the speed to 

access data is guaranteed to be very fast, as explained earlier in this chapter. However, at 

the same time we introduce a new problem of critical section and data consistency, and 

therefore, a way to synchronize the access to global variables is needed. However, this 

problem arises only when more than one process wants to change the value of the same 

variable.These common sources will be controlled by semaphores and before a process can 

obtain that resource and change its value, it needs to test the current value of the semaphore, 

which is stored in the kernel, and depending on that value, it can access that variable with 

the guarantee that no other process can interfere with it until it will be released, or it waits 

until it will be freed. 

In Table 1, global variables are shown along with processes that access to them. 

Column "set by " is used to determine the resource, accessed by more than one process, and 

thus needs to be controlled by semaphore. 
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Figure 12: Timing Dependency 

As can be seen in Table 1, we need four semaphores for the variables: Sent, Scount, 

NOU and LUP. Although Transmit is accessed by both T2 and T4, we do not need a 

semaphore because it is set to TRUE only once at the beginning by T4, and later if it is 

necessary, it will be set only to FALSE, either by T2 or T4. 
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3. SNR Packets Format 

Transmitter and receiver control packet format and data packet format are detailed 

in [Ref. 3] and in this thesis we use these same three formats and add another four types 

of packets needed to implement the protocol: Connection request packet, connection 

acknowledge packet, connection confirmation packet and disconnection type packet. In 

addition we define the SNR header to be as follows: LCI, type, block-no, packet-no within 

the block and data_length. Table 2 shows the SNR header format. The header will be the 

same for all seven types of packets. The sequence number defined in [Ref. 3] is divided into 

block-no and packet-no. Data_length (16 bits) was not defined in the original specification 

and added in this thesis to allow the transmission of different types of files including binary 

files. When dealing with binary files it is difficult to define a special character indicating 

the end of the file, since in this protocol the data packet length is fixed and consequently 

sometimes padded characters are added to the last data packet. This new field allows the 

receiver to separate padded characters from the original data. Also in this implementation, 

we always send an exact number of blocks, and consequently, we sometimes add empty 

packets to complete a block. The data_length for these empty packets will be zero (0). 

SNRJHDR: common to all types of packet, Table 2 shows the format of the SNR 

header and in Figure 13, its C definition is shown. 

LCI is the logical connection identifier, which is a unique sequence number across 

all the logical links which the host computer is engaged in. The type field identifies the type 

of the packet and ranges from 0 through 6. Block number used only for type 2 (data packet) 

and contains the number of the block being transmitted (received). Packet number is used 

for all seven types and contains the packet number (for data type packet, contains the 

number of the packet within the block). 
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set by read by 

Transmit T2,T4 T2 

Accept T2 T2,T4 

Fail T2 T2,T4 

T_active T2 T1.T3.T4 

Sent T1,T3 T3 

Disconnect T3 T2 

Scount T2,T3 T3 

NOU T1.T2 Tl 

Buffer T2 Tl 

TAIL T4 T1,T2,T4 

TRANS Tl T1,T2,T4 

RETRANS T2 T4 

LUP T1,T2 Tl 

Table 1: Accessing Global Variables 

LCI type block-no packet-no datajength 

Table 2: SNR Header Format 
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typedef struct { 

u_char block-no;        // 8 bits 

u_char packet-no;       // 8 bits 

}   SEQ; 

struct SNRJHDR { 

u_char lei; // 8 bits 

u_char type; // 8 bits 

SEQ seq; 

u_short datajength;    // 16 bits 

}; 

Figure 13: SNR Header Definition 

Receiver control packet (R_state): contains the state information of the receiver. 

Table 3 shows the format of the receiver control packet. 

SNRJHDR k LWr Buffer-avail LOB Error-check 

Table 3: Receiver Control Packet (type 0) 

struct rstate 

int k; 

int LWr; 

int Buffer-available; 

u_char       LOB[size_LOB]; 

int Error-check; 

}; 

Figure 14: C Definition of the Receiver Control Packet (type 0 ) 
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The sequence number of the packet is given by packet-no field of the SNR header 

and block-no is not used in this case; k, LWr, Buffer-avail and LOB contain values of 

receiver variables just prior to the transmission of the packet. The variable k is the interval 

between two control packet transmissions of the receiver in unit of Tin, LWr is a block 

sequence number such that all the blocks with sequence numbers less than this have been 

correctly received and acknowledged, Buffer-avail is buffer space available at the receiver 

in units of blocks, and LOB is a bit map representing the outstanding blocks between LWr 

and (LWr + L - 1) where L is the maximum window size. The first bit of LOB corresponds 

to LWr and is always set to 0. The other bits are set to 1 if the corresponding blocks have 

been received correctly, otherwise they are set to 0. LWr and LOB fields are used together 

to acknowledge the blocks received correctly. The last field contains an error detection 

code. 

Transmitter control packet (T_state): contains the state information of the 

transmitter. The packet format is shown in Table 4 and in Figure 15 a C definition of the 

same packet is given. 

SNR_HDR UWt No-blocks Error-check 

Table 4: Transmitter Control Packet Format (type 1) 

struct tstate { 

int k; 

int UWt; 

int No-blocks; 

int Error-check; 

}; 

Figure 15 : C Definition of Transmitter Control Packet 
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SNR header is similar to other packets except that the type field contains 1 to 

indicate that this packet contains the transmitter's state. The next two fields contain the 

values of the variables k and UWt of the transmitter just prior to the transmission of the 

packet. Similar to the receiver control packets, k is the interval between two control packet 

transmissions of the transmitter in units of Tin, updated by machine T3, UWt is the 

maximum sequence number of the block below which every block has been transmitted, 

but not necessary acknowledged, No-blocks field contains the number of blocks in the 

OUTBUF buffer waiting to be sent and this is given by the formula: 

(MAXBUF + (TAIL - RETRANS)) mod MAXBUF 

Data packet format: in addition to the SNR_HDR where type field contains 2 to 

indicate that this packet contains the data, we have the data field whose length is constant 

throughout the connection, and determined during the connection establishment phase. If a 

message does not fit into an integral number of packets, the space in the last packet will be 

padded with null characters. This is intended to simplify the packet processing in the 

receiver, the block-no extends across the lifetime of the connection, and the packet-no gives 

the sequence number of the packet within the block. The format of the data packet and its 

C definition are given in Table 5 and Figure 16 respectively. 

SNR_HDR data Error-check 

Table 5: Data Packet Format (type 2) 

struct packet { 

u_char data[DEF_DATALEN]; 

int Error-check; 

}; 

Figure 16: C Definition of the Data Packet 
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Connection request packet format: contains the negotiated parameters that both the 

transmitter and receiver must agree on before sending any data. The format and C definition 

of the connection request packet are shown in Table 6 and figure 17 respectively. 

SNR_HDR mode-communi- 
cation 

peak-bandwidth packet-size block-size receiver-buffer RTD 

Table 6: Connection Request Packet Format (type 3) 

struct connection { 

int mode_communication; 

int peak_bandwidth; 

int packet_size; 

int block_size; 

int receiver_buffer; 

int RTD; 

}; 

Figure 17: C Definition of Connection Request Packet 

In the SNR header, block-no is not used and packet-no field contains the sequence 

number of the packet, type field is equal to 3, mode-communication field contains 0, 1 or 

2, one of the three defined mode of operation of the SNR protocol, peak_bandwidth 

contains the maximum bandwidth during the connection, the next two fields contain the 

packet size and block size which remain constant during the connection, receiver_buffer 

field contains the buffer required at the receiver in units of blocks and since this value is set 

by the receiver, this field is used only for the conn_ack packet (type 4). The RTD field also 

is not used in this type of packet. It contains the estimated round trip delay in microseconds, 
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which is computed by the transmitter (T3) and available only for the conn_conf packet 

(type 5). The same format of packet is used for type 3, 4, 5 and 6 to make the processing of 

packets easier. 

4. Data Structure 

The four transmitter machines, Tl through T4, communicate through global 

variables in shared memory as explained earlier in this chapter. The structure of this shared 

memory, called GLOB and pointed to by "gptr" is shown in Figure 18. 

typedef struct { 

struct sockaddr_in destination; 

Mesg DATA; 

FLAG F; 

struct connection con; 

lup LUP[max_lup]; 

u_char mode; 

int RTD; 

int UWt; 

int sock; 

int Tin; 

int L; 

int lei; 

int Tl_pid; 

int T2_pid; 

int T3_pid; 

int T4_pid; 

} GLOB; 

Figure 18: Data Structure of the Global Variables in Shared Memory 
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Mode, of type unsigned character, is initialized by machine T4 and defines the 

mode of communication of the connection, RTD the round trip delay, estimated by T2, 

UWt, updated by Tl, is the sequence number of the block, below which all blocks are 

transmitted, sock is the raw socket identifier obtained by T4 during the initialization phase, 

Tin is the period of the timing mechanism of the protocol, L is the maximum window size, 

lei is the logical connection identifier, Tl_pid through T4_pid are the processes identifiers 

of the four transmitter machines, destination is a system structure that holds the address of 

the receiving host, passed to T4 when it is first invoked. DATA is a structure that defines 

the OUTBUF ring buffer and is shown in Figure 19. 

typedef struct { 

int RETRANS; 

int TRANS; 

int TAIL; 

struct packet    OUTBUF[MAXBUF]; 

} Mesg; 

Figure 19: OUTBUF Ring Buffer Structure 

F is a structure of type FLAG, shown in Figure 20 and defines the global variables 

that cause different machines to make their transition and communicate with each other. 

Con is a structure of type connection, shown in Figure 17 and contains the 

negotiated parameters, and finally LUP is the lup_table with size maxjup and contains lup 

structure shown in Figure 21. 

T2 and T2_slave communicate the same way using the shared memory and the 

structure used, called GLOB1 and pointed to by "gptrl," is shown in Figure 22. 
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typedef struct { 

u_char Transmit; 

u_char Accept; 

u_char Fail; 

u_char T_active; 

u_char Sent; 

u_char Disconnect; 

u_char Scount; 

int NOU; 

int Buffer; 

}FLAG; 

Figure 20: FLAG Structure 

typedef struct { 

int        seq; 

int       count; 

int        Ack; 

}lup; 

Figure 21: LUP Structure 

typedef struct { 

int s; 

u_char flag; 

R_CHANNEL      RC; 

} GLOB1; 

Figure 22: Structure of Shared Memory between T2 and T2 slave 
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typedef struct { 

int TRANS; 

int TAIL; 

struct RCH  R_CHAN; 

} R_CHANNEL; 

Figure 23: R CHANNEL Structure 

struct RCH { 

u_char data[MAXPACKET]; 

}; 

Figure 24: RCH Structure 

s is the socket identifier needed by T2_slave to receive from the socket, flag is a 

boolean variable when reset to FALSE by T2 causes T2_slave to terminate, R_CHANNEL 

is a structure that defines the receiver channel (ring buffer). Figures 23 and 24 show this 

structure. 

5. Functions used by Transmitter Machines 

In the protocol specification [Ref. 3], subroutines used by both transmitter and 

receiver were described in the form of algorithms using ADA's syntax. In this section the 

C source code of these functions, along with other functions needed for the implementation, 

are given. Access to global variables is made through gptr, a global pointer that points to 

the shared memory. 

void Enqueue(P): Inserts the data packet P at the end of the circular buffer 

OUTBUF. 

struct packet Dequeue(): Returns the data packet in the buffer OUTBUF 

following the TRANS pointer and advances the TRANS pointer to the next location. 
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int Empty(): Returns true if TRANS = TAIL, indicating that there are no data 

packets in the transmitter buffer. 

int Full(): Returns true if there are no empty buffer locations in OUTBUF to write 

data packets.In mode 0 true is returned if TAIL +1 = TRANS and in mode 1 and 2, true is 

returned if TAIL +1 = RETRANS, all operations are modulo MAXBUF. 

void Update_OUTBUF(LWr): Advances the RETRANS pointer of OUTBUF so 

that it points to the buffer location just before the first packet of block number LWr, thus 

leaving the acknowledged packets out of the retransmission buffer area. 

int Expired_LUP(): Returns the sequence number of the first expired block, or if 

none of the blocks has expired, it returns zero. 

void Insert(UWt): After the transmission of a whole block of packets has been 

completed (block number UWt), this function makes an entry into the LUP table for the 

block and initializes the retransmission counter. The initial value of the retransmission 

counter is calculated by the formula: RTD/Tin + cons. 

void Update_LUP(LOB,LWr,k): Every time a control packet is received from the 

receiver, the transmitter updates the LUP table using this function. To update the table, the 

ACK bits of the acknowledged blocks are set to 1, thereby allowing new entries to be made 

into the table, and the retransmission counters of the acknowledged blocks are decremented 

by k, which is read from the receiver control packet. 

void Balance(LOB,HOLD,LWr,LWt): In mode 1 or mode 2, every time a control 

packet is received, this function, called by machine T2, decrements the global variable 

NOU, accessed through the pointer gptr in shared memory, by the number of newly 

acknowledged blocks. To accomplish this, the bit-map of the previous control packet, 

which is stored in the variable HOLD, is compared with the LOB field of the currently 

received control packet 

int Acceptable(con_req): Evaluates the connection parameters in the con_req 

packet received from the receiver. Returns true if all the parameters are acceptable. 
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void Enqueue_RCH(P): This function is used by T2_slave to insert the received 

packet P into the R_CHANNEL buffer. 

int Empty_RCH(): Returns true if R_CHANNEL is empty. 

struct RCH Dequeue_RCH(): Returns the packet in the R_CHANNEL buffer, 

following the TRANS pointer and advances the TRANS pointer to the next location. 

int Full_RCH(): Returns true if there are no empty buffer locations in 

R_CHANNEL. 

void start_timer(t): Using this function, the internal clock system will send a 

SIGALRM signal every t microseconds, and the process calling this function must catch 

this signal. 

void stop_timer(): This function causes the timer to stop. 

int receiveit(): Returns true if R_CHANNEL buffer is not empty and the packet in 

the front is of type connection acknowledgment (CON_ACK) or connection request 

(CON_REQ). It also copies this packet into the con_req global packet of the calling 

process. Returns zero otherwise. This function is used by T2 during the connection phase. 

int receive_state(rs,seq,size): Returns true if the R_CHANNEL buffer is not 

empty and the packet in the front, which is copied into rs, is of type R_state. 

void tvsub(new_time,old_time): Given two "timeval" structure new_time and 

old_time, this function returns the difference new_time - old_time, used when computing 

the RTD. 

int Checksum(ptr,nbytes): returns checksum of the nbytes bytes beginning at 

address ptr. The checksum is returned in the low-order 16 bits (the integer is assumed 32 

bits). 

The C source code of these functions is given below: 

void Enqueue(P) 

struct packet P; 

{ 

gptr->DATA.OUTBUF[(gptr->DATA.TAIL +1)% MAXBUF] = P; 
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gptr->DATA.TAIL = ((gptr->DATA.TAIL +1)%MAXBUF); 

struct packet Dequeue() 

f 

gptr->DATA.TRANS = (( gptr->DATA.TRANS +1)% MAXBUF); 

return(gptr->DATA.OUTBUF[gptr->DATA.TRANS]); 

int EmptyO 

{ 

return(gptr->DATA.TRANS == gptr->DATA.TAIL); 

} 

int Full() 

{ 

if (gptr->mode)     /* mode is 1 or 2 */ 

retum(((gptr->DATA.TAIL+l)%MAXBlIF)==gplr->DATA.RETRANS); 

else /* mode 0 */ 

return(((gptr->DATA.TAIL+l)%MAXBUF)==gptr->DATA.TRANS); 

} 

void Update_OUTBUF(LWr) 

int LWr; 

{ 

gptr->DATA.RETRANS = (((LWr-l)*gptr->con.block_size)%MAXBUF); 

} 

int Expired_LUP() 

{ 

int i; 

for (i=0 ; i < maxjup; i++ ) 

if ((gptr->LUP[i].Ack =0) &&(gptr->LUP[i].count ==0))  /* found it */ 

return(gptr->LUP[i].seq); 
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return(O);  /* in case of the whole table was looked and conditions not satisfied */ 

I 

void Insert(UWt) 

u_char UWt; 

{ 

gptr->LUP[((UWt -2)%max_lup)].seq = UWt; 

gptr->LUP[((UWt -2)%max_lup)].count = (gptr->RTD/gptr->Tin) + cons; 

gptr->LUP[((UWt -2)%max_lup)].Ack = 0; 

void Update_LUP(LOB_ptr,LWr,k) 

int LWr , k ; 

u_char *LOB_ptr; 

{ 

inti; 

/* set the Ack of acknowledged blocks to 1 */ 

for (i=0 ; i < maxjup ; i++ ) 

if (gptr->LUP[i].seq < LWr) 

gptr->LUP[i].Ack=l; 

for (i=0 ; i < sizeJLOB ; i++ ) 

if((*(LOB_ptr+i))==l) 

gptr->LUP[((LWr +i - 2)%max_lup) +l].Ack =1; 

/* decremente counters of unack blocks */ 

for (i=0 ; i< maxjup ; i++ ) 

if(gptr->LUP[i].Ack = 0) 

if (gptr->LUP[i] .count <= k) 

gptr->LUP[i] .count = 0; 

else 

gptr->LUP[i] .count = gptr->LUP[i] .count - k; 

} 

void Balance(LOB_ptr,HOLD_ptr,LWr ,LWt) 

u_char      *LOB_ptr, *HOLD_ptr; 

int LWr,LWt; 
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int i; 

for (i = LWt; i < LWr ; i++ ) 

if (!(*(HOLD_ptr + i +1 - LWt))) 

gptr->F.NOU-; 

for (i = LWr ; i < (LWt + gptr->L); i++ ) 

if((*(LOB_ptr + i -LWr + 1 )) && !(*(HOLD_ptr + i - LWt + 1))) 

gptr->F.NOU--; 

for (i = (LWt + 1 - LWr + gptr ->L); i <= gptr->L ; i++ ) 

if((*(LOB_ptr + i)) 

gptr->F.NOU--; 

I 

int Acceptable(con_req) 

struct connection con_req; 

if ((conjreq.mode_communication !=gptr->con.mode_communication) II 

con_req.peak_bandwidth != gptr->con.peak_bandwidth)         II 

con_req.packet_size != gptr->con.packet_size)                II 

con_req.block_size != gptr->con.block_size)                  II 

con_req.receive_buffer != gptr->con.receive_buffer)              II 

con_req.RTD != gptr->con.RTD)                              II ) 

return(O); 

return(l);  /* the else part */ 

} 

void Enqueue_RCH(P) 

struct RCH P; 

i 

gptrl->R_CHAN[(gptrl->TATL +1)%MAX_CHAN] = P; 

gptrl->TATL = ((gptrl->TAIL 

} 

+ 1)%MAX_CHAN); 

int Empty_RCHO 

( 
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return(gptrl->TRANS == gptrl->TAIL); 

struct RCH Dequeue_RCHO 

gptrl->TRANS = (( gptrl->TRANS +1)% MAX_CHAN); 

return(gptrl->R_CHAN[gptrl->TRANS]); 

int FulLRCHO 

{ 

return(((gptrl->TAIL+l)%MAX_CHAN)==gptrl->TRANS); 

void start_timer(t) 

int t; 

{ 

if (t< lOOOOOO) 

{ 

itv.it_interval.tv_sec = 0; 

itv.it_interval.tv_usec = t; 

} 

else 

{ 

itv.it_interval.tv_sec = t/1000000; 

itv.it_interval.tv_usec = 0; 

} 

itv.it_value = itv.it_interval; 

setitimer(ITIMER_REAL,&itv,(struct itimerval *)0); 

void stop_timer() 

{ 

itv.it_interval.tv_sec = 0;     /* itv is a itimerval structure variable in "snrjr.h" file */ 
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itv.it_interval.tv_usec = 0; 

itv.it_value = itv.it_interval; 

setitimer(ITIMER_REAL,&itv,(struct itimerval *)0); 

int receiveitQ 

struct RCH   rpack; 

register struct SNR_HDR *snr;  /* pointer to SNR header */ 

register struct connection *uptr; /* start of the ACK packet */ 

if(Empty_RCH()) 

return(O); 

rpack = Dequeue_RCH();    /* the else part */ 

snr = (struct SNR_HDR *) rpackdata; 

uptr = (struct connection *) (snr + SIZE_SNR_HDR); 

if((snr->lci==gptr->lci)&&((snr->type=CON_ACK)ll(snr->type==CON_REQ))) 

{ 

con_req.mode_communication = uptr->mode_communication; 

con_req.peak_bandwidth = uptr->peak_band width; 

con_req.packet_size = uptr->packet_size; 

con_req.bIock_size = uptr->bIock_size; 

con_req.receive_buffer= uptr->receive_biiffer; 

con_req.RTD = uptr->RTD; 

return(l); 

} 

return(O); 

int receive_state(rs,seq,size) 

struct rstate *rs; 

int *seq; 

int size; 

struct RCH  rpack; 
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register struct SNR_HDR  *snr; 

register struct rstate  *uptr   /* start of the receiver state info */ 

if (Empty_RCH()) 

return(O); 

rpack = Dequeue_RCH(); 

snr = (struct SNRJHDR *) rpack.data; 

uptr = (struct rstate *)(snr + SIZE_SNR_HDR); 

if ((snr->lci ==gptr->lci)&&(snr->type ==R_state)) 

{ 

rs->k = uptr->k; 

rs->LWr = uptr->LWr; 

rs->buffer_available = uptr->buffer_available; 

bcopy(uptr->LOB,rs->LOB, size); 

rs->Error_check = uptr->Error_check; 

(*seq) = snr->seq.packet_no; 

return(l); 

} 

return(O); 

void tvsub(out,in) 

register struct timeval *out; 

register struct timeval *in; 

{ 

if ((out->tv_usec -= in->tv_usec) < 0)  /* subtract microsecondes */ 

{ 

out->tv_sec --; 

out->tv_usec += 1000000; 

} 

out->tv_sec-= in->tv_sec;    /* subtract seconds */ 

int Checksum(ptr,nbytes) 

register u_short *ptr;     // pointer to the first 2 bytes we need to compute the checksum 
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register  int nbytes; // total number of bytes we need to compute the checksum 

{ 

register long sum = 0; // holds the accumulated sum 

u_short oddbyte;  // used when nbytes is odd 

register u_short answer; // holds the returned value( u_short assumed 16 bits) 

while(nbytes > 1 ) 

( 

sum += *ptr++; 

nbytes -= 2 ;    // since ptr pointes to 2 bytes at a time 

( 

if (nbytes ==1) // takes care of case where nbytes is odd 

{ 

oddbyte =0; 

*((u_char *) &oddbyte) = *( u_char *) ptr; 

sum += oddbyte; 

} 

// add back carry outs from top 16 bits to low 16 bits 

sum = ( sum » 16) + ( sum & Oxffff); // add high-16 to low-16 

sum += (sum » 16);  // add carry 

answer = -sum;  // ones-complement, then truncate to 16 bits 

return( answer); 

C.   MACHINE IMPLEMENTATIONS 

In this section a C style algorithms for different transmitter processes are given. 

Algorithms follow closely the state diagrams and the Predicate Action Tables introduced 

in the specification of the protocol. Also, the fifth process, T2_slave, added to the protocol, 

is presented in more details. 

1. T2_slave Process 

As mentioned earlier, this process is added to the protocol for implementation 

reason. Invoked by T2, it is responsible for only receiving packets from the raw socket, 
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and enqueuing them into the R_CHANNEL. It executes this function as long as the variable 

"flag" remains true (it is reset to FALSE by T2). 

The T2_slave algorithm is: 

local variable declaration; 

attach shared memory GLOB1 to space address; 

set signal SIGUSR1 to be correctly handled; // this signal is needed because 

// the receivefrom is a blocking system call, that can be interrupted, and 

// when it is time to quit, T2 deblocks it by sending this signal. 

STATE = 0; 

while(STATE != 2)  // when it is time to quit, STATE is set to 2 

switch(STATE) 

{ 

case 0 : 

if(flag==T) 

STATE =1; 

break; 

case 1 : 

if ((flag==T)&&(there is packet in raw socket)) 

{ 

strip off the IP header from this packet; 

enqueue the resulting SNR packet into R_CHANNEL; 

} 

if(flag=F) 

STATE =2; 

break; 

}     // end case 

// STATE is 2 so quit 

detach shared memory and exit; 
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2. Process Tl 

At the end of the connection phase made by T2, and if this phase is successful, 

process Tl is forked by process T4. Initializes its local variables, attaches the shared 

memory GLOB to its address space and begins executing following the structure of the 

FSM diagram and the PAT specification described in Chapter II. 

The Tl algorithm is given below: 

local variables declaration and initialization; 

UWt =1; retrans_count =1; trans_count =1; 

attach the shared memory GLOB to address space (accessed through gptr); 

open Sentsem, Nousem and Lupsem semaphores;(they are created by T4) 

STATE =0; 

while(STATE != 4) // when it is time to quit,STATE is set to 4 

switch(STATE) 

{ 

case 0 : 

if(T_active==T) 

STATE =1; 

break; 

case 1 : 

if((T_active==T)&&(mode==2)&&(Expired_LUP()))//retrans. 

{ 

index = (((Expired_LUP()-l)*b_size)+retrans_count); 

blockjio = Expired_LUP(); 

packet_no = retrans_count; 

packet = OUTBUF[index%MAXBUF]; 

add SNRJHDR to the packet; 

compute checksum; 
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send it to raw socket using sendto system call; 

acquire Sentsem semaphore; 

Sent = T; 

release Sentsem semaphore; 

retrans_count++; 

if(retrans_count > b_size) 

{ 

retrans_count =1; 

LUP[(Expired_LUP()-l)%L +l].count = Initial_value; 

} 

} 

if(T_active && 

! EmptyO && 

(trans_count <= b_size) && 

( (mode ==0) II ((NOU<L)&&((Buffer-NOU)>0)&& 

((mode=l)ll !Expired_LUP())    ))) 

{ 

retrans_count =1; 

block_no = UWt; 

packe t_no = trans_count; 

packet = Dequeue(); 

add SNR_HDR to this packet; 

compute checksum; 

send it to raw socket using sendto system call; 

acquire Sentsem semaphore; 

Sent = T; 

release Sentsem semaphore; 

trans_count++; 
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} 

if(T_active ==F)   // quit 

STATE = 4; 

if(trans_count > b_size) // block compleated 

{ 

trans_count =1; 

UWt++; 

copy UWt to global UWt; //used by T3 in T_state packet 

STATE =2; 

} 

break; 

case 2 : 

if(mode==0) // no flow control 

STATE =1; 

else   // mode is 1 or 2, so flow control 

{ 

acquire Nousem semaphore; 

NOU++; 

release Nousem semaphore; 

STATE =3; 

} 

break; 

case 3 : 

if (mode ==2)   // error check 

acquire Lupsem semaphore; 

Insert(UWt); 

release Lupsem semaphore; 

STATE =1; 
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breack; 

}     // end case 

// STATE is 4, so quit 

detach the shared memory,close semaphores and exit; 

3. Process T2 

T2 is the first process "forked" by T4. T2 initializes its local variables, attaches the 

shared memory to its space address/'forkes" T2_slave to begin receiving from the raw 

socket, and executes its function in accordance with the specification of chapter II. 

T2 process algorithm is given below: 

local variables declaration; 

reset =10; max_attempts =3; // used for the connection phase 

sequence =1; // receiver control state_packet number 

attach GLOB to space address; 

get and attach shared memory GLOB1 ( used with T2_slave) 

flag =1; // 1 means TRUE, this for T2_slave to begin( flag is in GLOB1) 

fork T2_slave; 

open Scountsem,Nousem and Lupsem semaphores; 

sighold(SIGALRM) // ignore this signal for now 

set the SIGALRM signal to be handled //for the clock_tick implementation 

start_timer(DEFAULT_Tin); 

STATE =0; 

while(STATE != 8 ) // 8 means quit 

switch(STATE) 

{ 

case 0 : 

if(Transmit==T && Accept==T && Fail==F) 
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{ 

timer_flag =0 // it will be put to 1 when SIGALRM arrives 

sigrelse(SIGALRM) //now the timer will pop every Tin usec 

gettimeofday(old_t) // used to compute RTD 

send the con_req type packet to raw socket;// using sendto call 

STATE =1; 

} 

break; 

case 1 : 

if(receiveitO) // the R_CHANNEL(front) = conn_req 

{ 

stop_timer(); 

if( Acceptable(con_req)) // receiveit() dequeue into con_req 

{ 

gettimeofday(new_t); // new_t - old_t is RTD 

tvsub(new_t,old_t); // the difference is in new_t structure 

RTD = new_t.tv_sec* 1000000 + new_t.tv_usec; 

Tin = RTD/kou; 

T_active = T; 

send a CON_CONF packet to the receiver; 

STATE =2; 

} 

else  // unacceptable 

{ 

Accept = F; 

STATE = 8; 

}    // end else unacceptable 

send SIGUSR2 to T4  // T4 waits to be awaken by this signal 
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}    // end if receiveit() 

else   // we don't receive a packet 

if( timer_flag ==1 )  // clock case(SIGALRM was arrived) 

{ 

timer_flag = 0  // reset it so next time we can detect SIGALRM 

delay++; 

STATE = 6; 

} 

break; 

case 6 : 

if (delay < reset)   // OK case 

STATE = 1; 

else      // timeout case 

{ 

attempts++; 

delay =0; 

STATE =7; 

} 

break; 

case 7 : 

if (attempts < max_attempts)  // retry case 

{ 

gettimeofday(old_t); // computing RTD begins at this time 

send another CONJREQ packet; 

STATE =1; 

} 

else    // quit 

{ 
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stop_timer(); 

FAIL = T; 

STATE = 8; 

send SIGUSR2 to T4; 

} 

break; 

case 2 : 

if((receive_state(rs,sequence,sizeof(LOB)))&&(Disconnect==F)) 

STATE = 3; 

if(Disconnect = T)  // abort case 

{ 

T_active = F; 

Transmit = F; 

STATE = 8; 

} 

if((Transmit==F) && 

EmptyO && 

(Disconnect==F) && 

(((mode==2) && Empty_LUP()) II (mode != 2)))  // finish 

{ 

T_active =F; 

send a DISC_TYPE packet; 

STATE =8; 

} 

break; 

case 3 : 

if ( sequence > high) // update case 

{ 
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acquire Scountsem semaphore; 

Scount =0; 

release Scountsem semaphore; 

high = sequence; 

STATE =4; 

} 

else  // seq >= high so discart it 

STATE =2; 

break; 

case 4 : 

if( mode==0)   // no flow control 

STATE =2; 

else   // mode is 1 or 2, flow control 

{ 

acquire Nousem semaphore; 

Balance(rs.LOB,HOLD,rs.LWt,LWt); 

release Nousem semaphore; 

save rs.LOB into HOLD; 

LWt = rs.LWr; 

Buffer = rs.buffer_available; 

Update_OUTBUF(LWt); 

STATE = 5; 

} 

break; 

case 5 : 

if(mode==l)   // no error check 

STATE =2; 

if(mode==2)  // errorcheck 

53 



{ 

acquire Lupsem semaphore; 

Update_LUP(HOLD,LWt,rs.k); 

release Lupsem semaphore; 

STATE = 2; 

} 

}   // end switch 

// case 8,quit 

flag =0; // used by T2_slave 

send SIGUSR1 signal to T2_slave; 

detach shared memory, close semaphores and exit 

4. Process T3 

Upon successful connection phase, T2 sends a signal (SIGUSR2) to T4 process, 

which looks at global variables set by T2 in shared memory to see the result of the 

connection phase. At that time,T3 process will be forked by T4 if the connection is 

established. The following is a C style algorithm of T3: 

declare local variables; 

STATE =0;     // defines the FSM of T3 

count =0;    // used to ... 

UWt =1;       // used to update the global variable UWt 

attach shared memory; 

open Sentsem, Scountsem semaphores; 

initialize SNR_HDR; 

set signal SIGALRM to be handled properly when it arrives; 

hold this signal for now; 
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while( STATE != 6)       // STATE will be set to 6 to quit 

switch(STATE) 

{ 

case 0 : 

if(T_active is TRUE)      // start 

{ 

start_timer(Tin);   // now the timer will pop each Tin usec 

STATE = 1;        // move to the next state 

} 

break; 

case 1 : 

if(T_active is FALSE)   // quit 

{ 

stop_timer(); 

STATE = 6; 

} 

else 

{ 

sigpause(SIGALRM); // wait for clock-tick to arrive 

acquire Scountsem semaphore; 

increment Scount; 

release Scount semaphore; 

STATE =2;   // move to state 2 

} 

break; 

case 2 : 

if(Sent is FALSE)    // no data has been transmitted 

{ 
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increment count; 

STATE = 3;    // move to state 3 

} 

else    // Tl has sent data,so send control packet 

{ 

snr_hdr->seq.packet_no++; // increment sequence no 

//  prepare fields of control packet to send 

control_packet.k = k; 

controLpacket.UWt = global_variable UWt; 

control_packet.No_blocks=(MAXBUF+(TAIL- 

RETRANS))%MAXBUF 

send control packet using sendto system call; 

k=l; 

STATE =4; 

} 

break; 

case 3 : 

if((count < k)&&(Scount < Lim)) // delay 

STATE =1; 

else   // timeout 

{ // send control packet with same parameter as case 2 

increment sequence no of control packet; 

update control packet(k,UWt,No_blocks); 

send it to the raw socket using sendto system call; 

k = MAX( 2*k, k*Lim)); 

STATE = 4; 

} 

break; 
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case 4 : 

if(Scount < Lim)    // no disconnection 

{ 

acquire Sentsem semaphore; 

Sent = FALSE; 

release Sentsem semaphore; 

count =0; 

STATE =1; 

} 

else    // disconnect 

{ 

Disconnect = TRUE; 

STATE =5; 

} 

break; 

case 5 :    //to quit we wait until T_active, set by T2, becomes FALSE 

if( T_active is FALSE )    // quit 

STATE =6; 

break; 

}    // end case 

detach shared memory and exit; 

5. Process T4 

T4 is the first process invoked in the protocol. In the current implementation we 

assume the following: 
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When a user wants an SNR service, he invokes T4 by issuing the command "T4 

destination", where destination is the name of the host which we want to connect to, data 

to be transferred are assumed in a file named "my_file" and each line of this file holds a 

complete data packet. 

The C style algorithm of T4 is: 

local variable declaration; 

create shared memory GLOB using shmget system call; 

attach GLOB to address space using shmat system call; 

create Sentsem, Scountsem, Nousem and Lupsem semaphores; 

transform destination name to internet address; 

store this address in the global variable destination; 

get the raw socket identifier using socket system call; 

initialize global variables, including negotiated parameters; 

set signal SIGUSR2 to be correctly handled; 

open the file "my_data", data packet to be sent are in this file; 

fork process T2; 

wait T2 to establish connection, SIGUSR2 will arrive; 

// at this point the signal has arrived 

STATE =1; 

while(STATE != 0)    // 0 when we finish 

switch(STATE) 

case 1 : 

if(FailisTRUE)     //quit 

{ 

Transmit = FALSE; 

STATE = 0; 

} 

58 



if (Accept is FALSE)     // quit 

STATE = 0; 

if(T_active is TRUE)   // start 

{ 

fork Tl and T3; 

STATE = 2; 

} 

break; 

case 2 : 

if(T_active is FALSE)  // disconnect 

STATE =0; 

else 

if( no data to transmit)   // finish 

{ 

Transmit = FALSE; 

STATE =3; 

} 

else // write 

if( !Full()) 

{ 

read one packet; 

Enqueue(this packet); 

} 

break; 

case 3 : 

if(T_active is FALSE) 

STATE =0; 

}  // end case 
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detach shared memory, close semaphores and exit; 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

This thesis describes the implementation of the transmitter part of the SNR protocol 

(Transport protocol for high speed networks), made up with four different machines 

working in parallel, using C programming language. The implementation of the receiver 

part is done in parallel in a separate thesis. The implementation was done on top of the 

Internet Protocol (IP) using three workstations running two different versions of Unix 

Operating System (Solaris and Irix) and connected with FDDI network, allowing up to 100 

Mbps throughput. 

The structure of the C source code of each machine reflects the Finite State Machine 

and the associated Predicate Action Table as presented in the specification of the protocol. 

The conversion of the logic of the machines to C language environment is made straight 

forward by a very clear specification, whose correctness was proved in previous thesis 

work. 

Dealing with the operating system functions efficiently in order to improve the 

overall speed of the execution of the protocol was our main goal in our implementation.The 

four transmitter machines were implemented as four Unix processes and therefore the 

Inter-Process Communication (IPC) was an important issue in this implementation. The 

four different processes use shared memory to communicate with each other, which 

provides the best way in Unix facilities. An SNR packet is transmitted and received using 

the raw socket, a form of IPC provided by Unix Operating System. 

A fifth process is added to the transmitter protocol to interface with the IP layer by 

receiving packets from the raw socket and enqueuing them into R_CHANNEL. 

Some corrections and implementation details are added to the protocol. In Figure 6 

and Figure 10, either one of the two conditions count = k or scount = Lim is sufficient for 

the transition timeout to occur, in contrary to the specification, where the and is wrongly 

used instead of or. 
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In order to send all types of data (including binary files), another field, datajength 

(16 bits) is added to the SNR packet format, allowing the detection of the end of the file. 

Also to guarantee the termination of the protocol without loosing the last packets, a 

problem that is overlooked in the specification, the block-number and packet-number of the 

last packet are sent with the disconnect packet. 

Initially in the specification, only three different types of packet are defined, 

R_state, T_state and data packets. Four other types are added to the protocol in this 

implementation, necessary for the connection establishment and termination, Con_req, 

Con_acq, Con_conf and Discjype packets. 

Some of the problems we had in implementing the SNR protocol are: 

. The signal facilities provided by Unix were unreliable in earlier versions, meaning 

that race conditions existed and signals could get lost [Ref. 16]. Enhancements are made in 

both versions under which we implement the SNR, to provide reliable signals. The problem 

is these enhancements are not compatible and consequently, it was more difficult to ensure 

the portability of the code. 

. Since the number of processors is limited, the operating system decides which one 

of the five processes to run first, using a scheduling algorithm. This random behavior 

makes difficult the choice of the correct parameters of the protocol. These parameters must 

be set so that even if we do not receive packets from the receiver for a long period, it does 

not mean necessarily that the receiver is dead and it can be caused by a scheduling problem. 

. The Tin interval of the protocol depends on the Round Trip Delay (RTD) which 

is computed based on the system clock. The precision of this clock is limited and for high 

speed networks, RTD can not be correctly computed. 

Some tests were conducted on the protocol (transmitter and receiver) in all three 

modes, using both versions of the Unix operating system (Solaris and Irix). These tests 

were necessary to choose the correct parameters. The transmitter sends text files that can 

be either found in a special directory or entered by the user. We used three types of text 
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files, small (less than 100 bytes), medium (between 100 bytes and 10 kbytes) and large files 

(more than 10 kbytes). Packet sizes were 20, 28, 40 and 72 bytes, and 8 packets per block. 

Errors are made by not sending or unacknowledged some packets, the lost packets were 

eventually retransmitted by the transmitter. In each state of the protocol, statements are 

printed on the screen showing the progress of the protocol. More details on the 

implementation tests can be found in [Ref. 23]. 

In this thesis we showed that the SNR protocol can easily be implemented in 

software using the current workstations. 

Further improvement of this implementation could concentrate on: 

. Implementing the SNR on top of the data link layer directly rather than using the 

IP layer, which we expect results in a less overhead. 

. Implementing the SNR in a multiprocessor environment (five processors for the 

transmitter and five for the receiver), where each machine is dedicated to a different 

processor. 

. Make the existing applications (FTP, Email...) run with the SNR rather than TCP. 

. Using multicasting, so the same transmitter can send data to more than one 

receiver at a time. 

. And finally testing and comparing the implementation with other transport 

protocols such as TCP/IP. 
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